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Abstract. The question of whether every convex polyhedron is edge-
unfoldable without intersection remains open. In support of efforts
towards resolving this question, insights are offered into angular re-
strictions on the cut-graph of an unfolding of a polyhedral surface
which can ensure that the unfolding is without overlap.

§1. Introduction

The following quote is taken from Demaine and O’Rourke’s “A Survey of
Folding and Unfolding in Computational Geometry” (2005):

A classic open problem is whether (the surface of) every convex
polyhedron can be cut along some of its edges and unfolded into
one piece without overlap. [...] It seems folklore that the answer
to this question should be yes, but the evidence for a positive
answer is actually slim. [DO05]

In [F97] Fukuda showed with a slim tetrahedron that when carefully cho-
sen, even the simplest polyhedral surface could admit a self-intersecting
unfolding (Figure 1). This almost trivial example shows that the choice
of net in constructing an unfolding can be critical to the unfolding’s valid-
ity. This was amply demonstrated by O’Rourke in [O98], in which it was
shown that as the number of vertices of a convex mesh increases, the per-
centage of nets which generated invalid, self-intersecting unfoldings goes
rapidly to 100%.

However, while these prior works show that many convex meshes exist
which admit one or more invalid unfoldings, no example has yet been
found of a convex surface which has no valid unfolding. The intent of
this paper is to offer insights of potential use in the quest for a proof of
whether or not all convex polyhedra are edge-unfoldable. Lemmas are
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Fig. 1. Two unfoldings of Fukuda and Namiki’s slim tetrahedron: without
intersection (left) and with intersection (right).

offered which describe angular criteria under which the unfolded net of
a polyhedral surface can have no intersection. It is hoped that this will
spur ongoing discussion of this fascinating question, and that future work
will extend these angular criteria into the robust framework of a proof of
convex polyhedral developability.

§2. Definitions

A polyhedral surface is said to be developable or edge-unfoldable if a subset
of its edges can be found which may be cut such that the faces of the mesh
remain connected in a net by edges about which the mesh may be unfolded,
flattening to the plane without intersection.

The angle deficit of a vertex V is 2π minus the sum of the corner angles
of the polygonal facets meeting at V ([V94], p.5.) An edge or series of
edges broken in the course of developing a model is referred to as a cut.
Cuts join together to form the cut-graph, a connected undirected graph of
edges which will be removed to unfold the surface.

A series of edges linked end-to-end in a cut-graph is called a cut-path.
A cut-path Φ is represented as an ordered vertex list {V0..Vn}, at each of
which at most two incident edges are cut. Vertex V0 is called the root of
the cut. Vertex Vn is called the tip of the cut. At the root and tip vertices,
only one incident edge is cut.

An edge VkVk+1 on the cut-path Φ is congruent to two projected edges

in the unfolded net. These duals are labeled V L
k V L

k+1
and V R

k V R
k+1

, where
L and R denote the left- and right-hand duals of the unfolding edge re-
spectively (Figure 2). The set of all left-hand edges projected from Φ is
labeled ΦL. The set of all right-hand edges projected from Φ is labeled
ΦR.

The root of a cut is cut by only a single edge, and so projects to only
a single point in the unfolding plane. To distinguish the projection of
V0 from the original on the source surface, the projection is labeled V O

0 .
This notation is chosen to emphasize that V O

0 denotes, in some sense, the
‘origin’ in the plane of the unfolding on this cut-path.
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Fig. 2. Unfolding projects the vertices of the cut-path Φ to two sets of coordi-

nates in ℜ2, ΦL and ΦR. α = AD(Φ) =
Pn

i=0
AD(Vi). β = min(βL, βR).

In the interest of brevity in notation, the symbol αn is adopted for
the angle between the nth pair of unfolded edges of a cut-path Φ. The
symbol βn identifies the angle from V O

0 to the nearer of the two unfolded
projections of VnVn+1, measured at Vn (Figure 2):

αn = 6 (V L
n V L

n+1, V
R
n V R

n+1) =

n
∑

i=0

AD(Vi),

βn = min(6 (V O
0 V L

n V L
n+1), 6 (V O

0 V R
n V R

n+1)).

The total angle deficit of a convex polyhedron is 4π[W99]. This is then
the maximum possible value of α over the longest possible cut-path on the
surface, visiting every vertex in the surface once.

§3. Angular Restrictions to Ensure Developability

3.1. Preventing overlap between each pair of unfolded edges

Lemma 1. Given a cut-path Φ = {V0..Vn} where
∥

∥

∥
V O

0 V L
n

∥

∥

∥
=

∥

∥

∥
V O

0 V R
n

∥

∥

∥
,

if βn ≥ π/2 then it is impossible for V L
n V L

n+1 to intersect V R
n V R

n+1.

Proof: An affine transformation may be constructed which maps V O
0 to

the origin of ℜ2, V L
n to [0,1] and V L

n+1, V R
n and V R

n+1 to unique coordinates
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in positive X on the XY plane. These points are labeled O, A, B, C and
D, respectively. Note that attention is restricted to the range 0 ≤ α ≤ π.

Expressing C and D in terms of A and B rotated about the origin by α
radians and solving the system of linear equations AB(t) = A+ t(B −A),
CD(u) = C + u(D − C) for t, u, yields

t =
1 − By + Bxtan(α/2)

B2
x + (By − 1)2

,

u =
1 − By + Bx(cot(α) − csc(α))

B2
x + (By − 1)2

.

Rewriting B as [k ∗ cos(β), 1 + k ∗ sin(β)] gives

t = (cos(β)tan(α/2) − sin(β))/k

u = −(cos(β)tan(α/2) + sin(β))/k

If 0 ≤ α ≤ π then tan(α/2) is positive. If π/2 ≤ β ≤ π then cos(β) is
negative and sin(β) is positive. If 0 ≤ α ≤ π and π/2 ≤ β ≤ π, then
t ≤ 0, i.e., the two line segments cannot intersect.

3.2. Preventing overlap between an edge and previous edges on

the cut-path

Lemma 2. Given a cut-path Φ = {V0..Vn+1} where V L
n and V R

n have

unfolded to the same distance d in the plane from V O
0 , if βn ≥ π/2 then it

is impossible for V L
n V L

n+1 to intersect any edge before n in ΦR. Likewise,

V R
n V R

n+1
cannot cross any prior edge in ΦL.

Proof: Recalling that βn is the minimum of the two angles 6 (V O
0 V L

n V L
n+1)

and 6 (V O
0 V R

n V R
n+1), β ≥ π/2 implies that both

∥

∥

∥

V O
0

V L
n+1

∥

∥

∥

and
∥

∥

∥

V O
0

V R
n+1

∥

∥

∥

are greater than d. Both projections of Vn+1 will lie outside the circle of
radius d centered on V O

0 . Geometry permitting, each pair of unfolded
edges in a cut-path may be chosen to lie between circles of progressively
larger radius centered on V O

0 , and so will never intersect the unfolded
projections of any earlier edge.

3.3. Extending a cut-path while ensuring developability

Lemma 3. Given a cut-path Φ = {V0..Vn} on a closed convex surface

there must exist at least one vertex Vn+1 in the one-ring of Vn such that

βn ≥ π/2.
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Fig. 3. Nested circles bound regions of intersection.
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Fig. 4. (a) Extending a cut-path without introducing the possibility of intersec-
tion. (b) Sufficiently large angle deficit eliminates the possibility of intersection.

Proof: For every vertex S’ adjacent to Vn (Figure 4a), on a mesh of
convex facets there must exist at least one other vertex S” such that π/2 ≤
6 (S′VnS′′) ≤ 3π/2. Thus if it were the case that selecting S’ as Vn+1 gave
a value for βn which was less that π/2, then selecting S” as Vn+1 instead
would give π/2 ≤βS′ + 6 (S’V0VnS”)≤ 3π/2. Therefore selecting S” as
Vn+1 is guaranteed to yield βn ≥ π/2.

Lemma 4. Given a cut-path Φ = {V0..Vn+1} where V L
n and V R

n have

unfolded to the same distance d in the plane from V O
0 , if βn > (π − α)/2

then it is impossible for V L
n V L

n+1 to intersect V R
n V R

n+1.
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Fig. 5. Unfolding the sphere by cutting edges along geodesic curves.

Proof: If βn ≥ π/2 then there is no intersection (Lemma 1b). If βn < π/2

then the edge V L
n V L

n+1 intersects the circle of radius d at some point C
(Figure 4a). The triangle V L

n CV O
0 is an isosceles triangle with angles βn,

βn, π − 2βn. αn > π − 2βn implies that V R
n must lie outside the triangle

V L
n CV O

0 , indicating that the triangle V R
n DV O

0 does not overlap V L
n CV O

0

at any point other than V O
0 . Therefore if βn > (π − αn)/2 then V L

n V L
n+1

and V R
n V R

n+1
cannot intersect.

§4. Conclusions and Future Directions

Taken together, these four lemmas may be informally summarized as, “if a
cut doesn’t bend too far onto itself before it’s opened wide enough, its two
sides are sure to never cross.” Slightly more formally, this could be phrased
as, “cuts should travel along geodesic lines.” This inspires a rough sketch
of a final proof: a single vertex, chosen arbitrarily, would become the root
of a tree of cut-paths. It should be possible to show through an extension
of Lemma 3 that every vertex on the surface could be connected by a cut-
path to this seed vertex, and that those cut-paths could be constrained
to travel within some tolerance of the geodesic linking their targets to the
root point. Proximity to the geodesic would allow Lemmas 1 and 2 to
prove a lack of conflict for the early portions of the path (where the total
angle deficit had not yet exceeded π) and Lemma 4 would extend that
support for greater values of α. The resulting cut-graph would look like
a star (Figure 5), similar in overall construction to Agarwal et al’s Star
Unfolding [AAOS97].

In order to realize the proof, a great deal of future work remains. The
constraint of matching the unfolded radii of V L

n and V R
n , an essential

part of each proof, is particularly difficult to meet in that it places strong
restrictions on the set of admissible surfaces and cut-paths. While this is
not an issue for the unfolding of, for example, a parametric model of the
globe along longitudinal lines, very few models are so well-behaved or offer
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edges which can be so cleanly mapped to geodesics; a more general form is
essential. The mathematics given also address only α and β in the range
{0..π, (π − α)/2..π}; full coverage of the configuration space is required.

This is only a rough sketch of the possible final structure of the proof.
Nonetheless, if it proves possible to extend these lemmas to form a robust
framework, then there will be a real hope of achieving a proof of the un-
foldability of convex polyhedra. At the same time, if an undevelopable
polyhedron does exist, then a good chance of finding it lies in finding the
counterexamples to the approaches described.
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